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Abstract
An atomistic lattice-gas model is developed which successfully describes all key features of the
complex mounded morphologies which develop during deposition of Ag films on Ag(111)
surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable
multilayer growth mode derives from the presence of a large Ehrlich–Schwoebel step-edge
barrier, for which we characterize both the step-orientation dependence and the magnitude.
Step-dynamics modeling is applied to further characterize and elucidate the evolution of the
vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these
step-dynamics equations leads to instructive continuum formulations for mound evolution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A central goal of theoretical and simulation studies of epitaxial
thin film growth is to develop realistic and predictive models
for such processes [1, 2]. A reasonable criterion for success
is that such models describe quantitatively all features of
the possibly complex multilayer film growth morphologies
for a substantial range of deposition conditions (i.e., surface
temperature, T , and deposition flux, F). For homoepitaxial
growth, a distribution of two-dimensional (2D) islands
first forms in the initial submonolayer stage of deposition.
Subsequently, mounds (multilayer stacks of 2D islands)
develop during unstable multilayer growth in the presence of
an Ehrlich–Schwoebel (ES) step-edge barrier [1, 2]. This
ES barrier constitutes an additional energetic barrier, above
that for intralayer terrace diffusion, which inhibits downward
transport [3]. Thus, successful models should describe the
lateral size and shape of these islands and mounds, the vertical
profile of the mounds, and the evolution of these quantities

during growth. To date, examples of models achieving these
goals are rare [4, 5].

Deposition of Ag on Ag(111) provides a classic example
of rough multilayer growth exhibiting the formation of
‘wedding-cake-like’ mounds due to the presence of a large ES
barrier [5–12]. Here, we develop different types of models for
film growth in this system.

(i) An atomistic lattice-gas (LG) model [5] for which the key
ingredients are: random deposition including downward
funneling (DF) at step edges to adsorption sites in lower
layers; terrace diffusion leading to nucleation and growth
of 2D islands within each layer; dissociation of small
sub-stable islands; edge diffusion around the perimeter
of larger islands; diffusive downward interlayer transport
inhibited by a significant and non-uniform ES barrier.

(ii) A semi-discrete step-dynamics model incorporating DF
[13] wherein steps at the edge of each atomic layer within
a mound are treated as separate continuous curves. These
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evolve at a rate determined by the attachment flux to
the step. One must also treat the annihilation of steps
at valleys between mounds, and the nucleation of new
islands (and thus steps) at the peak of mounds [1, 2, 14].

(iii) A coarse-grained three-dimensional (3D) continuum
model for evolution of a continuous height function
describing the vertical profile of an individual wedding-
cake versus lateral radius (and an alternative formulation
describing radius versus height). Such formulations are
most conveniently developed by ‘coarse-graining’ the
step-dynamics model [1, 2, 13–15].

Development of our detailed and realistic atomistic
model (i) is guided by close comparison with experimental
observations, primarily from scanning tunneling microscopy
(STM) studies. Both models of type (ii) and (iii) are instructive
for interpreting behavior predicted by the atomistic model and
observed in experiment [1, 2]. Often, it will be useful to report
lateral positions and distances in terms of the surface lattice
constant a = 0.289 nm for Ag(111), and vertical heights in
terms of the interlayer spacing, b = √

2a/
√

3 = 0.236 nm.
In section 2, we first present results from Kinetic

Monte Carlo (KMC) simulations of our atomistic lattice-gas
(LG) model of submonolayer island formation, focusing on
transitions in island shape with varying deposition temperature
from 120 to 200 K. We also demonstrate that these shapes for
higher submonolayer coverages encode information about non-
uniformity in the ES barrier. We then present results from
KMC simulation of the atomistic LG model for multilayer
growth below 200 K. In particular, we assess the magnitude of
the ES barrier from an analysis of the size of terraces or islands
at the top of mounds. In section 3, we apply step-dynamics
modeling which incorporates DF at step edges (assuming a
circular island and mound geometry) to provide insight into
the vertical mound profiles including the height of the valleys
between mounds and the terrace width distribution on the side
of the mounds. In section 4, we develop two complementary
versions of the continuum evolution equations for mound shape
by coarse-graining the step-dynamics equations. Section 5
provides concluding remarks.

2. Atomistic modeling: submonolayer islands and
multilayer mounds

We now enumerate in more detail the key ingredients of the
atomistic model sketched above in section 1: (i) random
deposition of atoms resulting in adsorption at a three-fold-
hollow fcc site at the point of impact should one exist, or
‘funneling down’ to such a site in a lower layer should the atom
be deposited at a step edge or on the side of a microprotrusion;
(ii) terrace diffusion of isolated adatoms between fcc sites
within the same layer with diffusion barrier Ed = 0.10 eV
established previously [1, 2] and a prefactor ν = 1011 s−1

selected to recover the experimentally observed submonolayer
island density at lower T ; (iii) reversible island formation
with critical size i = 3, i.e., dimers form reversibly, their
dissociation being controlled by a bond energy of Eb =
0.19 eV and the above prefactor; larger islands of three or
more adatoms are stable (i.e., adatoms cannot detach from

them as this typically requires breaking of multiple bonds);
(iv) edge diffusion by hopping of adatoms between fcc sites
around the perimeter of larger islands; we have used activation
barriers for edge diffusion guided by the semi-empirical
embedded-atom-method (EAM) and effective-medium theory
(EMT) for Ag/Ag(111), but refined to more accurately describe
the observed transitions in island shapes (see [16]5 and the
following discussion for details); (v) diffusive downward
interlayer transport inhibited by a significant and non-uniform
ES barrier which will be described in more detail below.

Our model does not include hopping of adatoms to
hcp sites or concerted multi-atom hops. Discussion of
and support for this simplification is now provided. It
is often proposed that diffusion of small clusters (which
is excluded from our modeling) can be important during
epitaxial growth. Furthermore, it is clear that an accurate
description of such small-cluster diffusion in homoepitaxial
fcc(111) systems requires incorporation of both occupancy of
hcp sites and concerted multi-atom motion [17, 18]. However,
since the diffusion barrier for dimers and larger clusters is
likely significantly higher than that for monomers, a standard
analysis [2] shows that cluster diffusion cannot significantly
impact the submonolayer island formation process (or
specifically the island density). In addition, it is well known
that cluster diffusion does not play a dominant role in post-
deposition coarsening of submonolayer island distributions
in the Ag/Ag(111) system [20]. For multilayer growth, it
has been proposed that cluster diffusion might be important
in allowing islands at the top of mounds to migrate so that
their edge touches that of the larger supporting island, thereby
opening up a fast interlayer diffusion pathway [19]. However,
the only observations of such behavior are for much longer
timescale post-deposition experiments, and no evidence has
been provided that such processes are significant on the much
shorter timescale of growth.

Despite these observations, short-range cluster diffusion
could have an impact on film growth morphology. This process
allows small clusters to at least transiently populate hcp sites.
If locked in to such a hcp configuration during growth, this
leads to the formation of so-called ‘stacking fault islands’
(SFI) [21, 22]. SFI have adatoms effectively permanently
on hcp sites. This scenario results in the development of
anti-phase boundaries between SFI and regular islands (RI)
with adatoms on fcc sites which impact subsequent multilayer
growth. In some systems, e.g., Ir/Ir(111), the relative
population of SFI versus RI can be high [21, 22]. However,
our own experimental analysis of SFI for Ag/Ag(111) reveals
a negligible population of SFI for the temperatures of interest
here [23]. Thus, population of hcp sites and small-cluster
diffusion can be safely neglected in the modeling of film
growth. See the appendix for further discussion.

We shall see below that concerted exchange does play
a role in certain interlayer diffusion processes. However,
the final state or atomic configuration is the same for

5 Edge diffusion barriers were slightly modified from [16] to better describe
observed island shapes: 0.28 (0.30 eV) along straight A-(B-)steps; 0.28
(0.33) eV from A-(B-)steps to corners; 0.08 (0.13) eV from corners to
A-(B-)steps; the prefactor was 1013 s−1.
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Figure 1. (a) Schematic of edge diffusion processes showing corner diffusion anisotropy (CDA) at corners of hexagonal islands (with atoms
directed to A-steps over B-steps), and corresponding enhanced relaxation to step edge of singly-bonded adatoms on B-steps (relative to
A-steps). Processes are labeled by the type of step edge (A or B), the type of site (corner, c, or kink, k). (b) PES for edge diffusion around a
corner of a hexagonal island [16]. (c) STM image of dendritic islands formed by deposition at 135 K with F = 0.003 ML s−1. The lightest
color indicates second layer islands. The white dashed lines indicate the orientation of B-steps.

concerted exchange as for standard hopping, so the key
factor determining film morphology is the rate rather than
the mechanism of interlayer transport. For this reason, we
can describe all interlayer diffusion process by hopping but
interpret the barrier used to match experimental behavior as
corresponding to that for the actual diffusion pathway.

An appealing feature of the Ag/Ag(111) system is that
equilibrium island shapes are almost perfect hexagons since
the free energies of the (100)-microfaceted A-steps and (111)-
microfaceted B-steps in this system are almost equal [20].
This feature is incorporated into our selection of the activation
barriers for edge diffusion, which necessarily satisfy detailed
balance. Thus, deviations from six-fold symmetry in the lateral
growth shapes of islands or mounds (as described below) are
purely kinetic in origin. In the experimental and simulation
results for film deposition described below at various T , the
deposition flux is always selected to be 0.003 ML s−1.

2.1. Submonolayer deposition

In general, restricted edge diffusion in metal(111) homoepi-
taxial systems, at least at lower T , implies that island shape
relaxation is inhibited on the timescale of island growth [1, 2].
This leads to irregular (sometimes fractal or dendritic) island
growth shapes. This diffusion-limited-aggregation (DLA) type
shape instability is apparent in the simplest DLA hit-and-stick
models for aggregation [24]. However, realistic description of
island shapes in metal(111) homoepitaxy requires several ad-
ditional refinements (as are incorporated into our model).

(i) Even at very low T , adatoms which are singly-bonded to
another atom at the edge of an island can readily relax to
reach more highly coordinated sites at the island edge [25].
Thus, even low T around 100 K, island structure is more
dense than in simple DLA models.

(ii) Diffusion along close-packed step edges is quite
significant for T above ∼140 K. A consequence is that
fractal islands form with ‘fat’ arms. In the absence of a
significant additional kink rounding barrier, as is typically
the case in metal(111) homoepitaxy [1, 19], the width of
these arms scales like the square root of the edge hop
rate [26].

(iii) Metal(111) homoepitaxial systems typically exhibit ‘cor-
ner diffusion anisotropy’ (CDA) wherein singly-bonded
adatoms aggregating at the corners of hexagonal islands
can more easily reach A-steps than B-steps [16, 25, 27].
CDA also implies that adatoms singly-bonded to other
step-edge adatoms, which are either isolated or at the
ends of strings of adatoms along sections of close-packed
steps, can more easily reach B-steps than A-steps. See fig-
ure 1(a) for schematic of these edge diffusion processes,
and figure 1(b) for the potential energy surface (PES)
describing CDA.

The key aspects of KMC simulation results for island
shapes at lower submonolayer coverages for the atomistic
lattice-gas model described above are as follows [16].

(a) At lower T around 120–135 K, relaxation to more highly
coordinated sites of adatoms aggregating at singly-bonded
sites at A-steps (B-steps) is less (more) facile due to CDA.
This means that growth orthogonal to A-steps dominates.
This produces triangular dendrites with envelopes aligned
with B-steps [16]. See figure 1(c) for a STM image
showing these islands.

(b) At higher T around 180–200 K, edge diffusion is
sufficiently facile to produce compact islands having
distorted hexagonal shapes with longer B-steps at low
submonolayer coverages, up to θ ∼ 0.3 monolayers
(ML) [16]. The distortion results from the preference for
atoms aggregating at corners where the diffusion flux is
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highest to be directed to A-steps due to CDA. This causes
A-steps to grow faster resulting in islands with longer B-
steps. For higher submonolayer coverages, the details
of interlayer diffusion dominate island shape selection
producing distinct behavior, as described in detail below.

(c) For intermediate T around 150–160 K, inhibited but active
edge diffusion produces roughly isotropic ‘fat fractal’
islands [16].

For deposition of higher submonolayer coverages, θ ∼
0.7 ML, STM images reveal distorted hexagonal islands with
longer A-steps at 180–200 K (rather than longer B-steps which
result from CDA at lower coverages) [5]6. To explain this
surprising observation, we note that islands cover most of the
substrate at 0.7 ML, so that a correspondingly large fraction
of deposited atoms land on top of islands. At these higher
T , most of these adatoms can hop down facilitating island
growth. With a uniform ES barrier, adatoms would hop down
all islands sides with equal probability, so that islands would
still have longer B-steps due to CDA. With a non-uniform ES
barrier which is lower at B-steps, most atoms would hop down
these B-steps causing them to grow faster, thereby resulting in
islands with longer A-steps. Thus, the appearance of longer
A-steps provides clear evidence for such a non-uniform ES
barrier. In section 3, we provide a more detailed description
of our treatment of the non-uniform ES barrier [5]. As an
aside, such a non-uniformity in ES barrier does not have much
influence on the shape of fat fractal islands at around 150 K.
Figure 2 compares experimental island shapes with simulation
results for both a uniform and a non-uniform ES barrier at 150
and 180 K.

Finally, we comment briefly on the island nucleation
process which impacts, e.g., submonolayer island densities.
Typically, one introduces a critical size, i , above which islands
are stable. At sufficiently low T , island formation will be
irreversible (i = 1) and the island density will scale like
Nisl ∼ (F/ν)1/3 exp[−Ed/(kT )] [1, 2]. In some metal(111)
homoepitaxial systems at low T , Nisl is significantly impacted
by long-range oscillatory adatom pair interactions, but this is
not the case for Ag/Ag(111) [28]. For higher T , one expects
a transition to reversible island formation, i > 1, first to a
reasonably well-defined regime of i = 2 (i.e., stable doubly-
bonded trimers) [2]. Our ‘i = 2’ model described above with
a dimer bond strength of Eb ≈ 0.19 eV automatically recovers
i = 1 behavior significantly below 150 K, but includes some
reversibility at 150 K and strong reversibility at 180 K. See
section 3. As an aside, this Eb-estimate came from our density
functional theory analysis with a large 6 × 6 unit cell size [29].
A previous estimate of 0.24 eV, based on a smaller 4 × 4
cell [28], does not reliably describe the transition to i > 1.

2.2. Multilayer growth

Multilayer film morphology is controlled by the presence of
an ES barrier and to some extent by downward funneling
(DF) [1, 2]. Both features are incorporated into our atomistic

6 Longer B-steps at high T was incorrectly reported in [16] based on figure 1
in that reference. The sample used at high T is different and oriented at ∼180◦
from that at low T .

B Steps

B Steps

B Steps

(a) (d)

(c) (f)

(b) (e)

Figure 2. Comparison of STM images ((a), (d)) of islands shapes
and predictions of simulations for non-uniform ES barrier ((b), (e))
and uniform ES barrier ((c), (f)) with F = 0.003 ML s−1. In the
non-uniform case, the barrier at B-steps is half that at A-steps. Fat
fractals appear for deposition at 150 K for θ ≈ 0.3 ML ((a), (b), (c)).
Distorted hexagons appear at 180 K for θ ≈ 0.7 ML ((d), (e), (f))
with longer A-steps in (d) and (e), and longer B-steps in (f). Image
sizes are 280 × 280 nm2. The lightest color indicates second layer
islands.

modeling which also uses the same attempt frequency for
inter and intralayer diffusion [5]. In the regime of large ES
barrier, δES, one expects limited interlayer transport implying
Poisson-like growth where root-mean-square film roughness,
W , increases like θ1/2 [1, 2]. This type of behavior has been
seen in previous diffraction studies of Ag growth on Ag(111)
at low T [10–12], and was confirmed in our STM studies [5].
Furthermore, since the ES length, LES = exp[δES/(kT )] − 1,
far exceeds the average submonolayer island separation, L isl =
(Nisl)

−1/2, each mound is typically built upon a base of a single
submonolayer island [1, 2]. One expects prolonged steepening
of mound sides during growth, and limited coarsening of their
lateral size. The large value of W is not so sensitive to
the precise (large) magnitude of δES, so other strategies are
needed to estimate this important (and much debated [30])
quantity.

Based on the observations of submonolayer islands shapes
at 180 K in figures 2(d)–(f), we incorporate a non-uniform
ES barrier determined by the local structure of the step edge.
We fix the ratio of ES barrier for B- to A-type steps to equal
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Figure 3. Dependence on the average top layer island size (measured
in atoms) on the ES barrier for B-steps, δES (B-step), for 3 ML films
deposited with flux F = 0.003 ML s−1. We set
δES (B-step) = 1/2δES (A-step). Experimental and simulations
results are compared at 150 and 180 K. Estimates for δES (B-step)
from data at different T are quite consistent (0.085 eV for 150 K, and
0.075 eV for 180 K).

1/2. This choice is guided by and consistent with EAM
predictions, which also indicate that exchange provide a facile
pathway at B-type but not A-type steps [5]. The magnitude
of the ES barrier is determined by exploiting the extreme
sensitivity to this quantity of the size of islands or terraces
on the tops of mounds (contrasting the behavior of W) [5].
See figure 3. Choosing a value which is too high makes it
too difficult for atoms landing on these terraces to hop down.
Thus, new higher layers are quickly nucleated by aggregation
of these adatoms leading to mounds with small top terraces and
anomalously pointed peaks. See figures 4(c), (f) where δES =
∞. Instead, choosing δES (B-step) ≈ 0.08 eV matches well
the experimental top layer island sizes. Compare figures 4(a),
(b) (150 K) and 4(d), (e) (180 K).

Note that in order to obtain reasonably consistent
estimates for δES (B-step) from data for the two different
temperatures, it is essential to accurately treat the degree of
reversibility in island nucleation as this also greatly impacts
top layer island size. Using Eb significantly above 0.19 eV, or
simply prescribing i = 1, produces a large discrepancy: such
choices makes island nucleation too easy at higher T forcing a
lower choice of δES (B-step) at higher T than for lower T .

We have also applied our atomistic model to characterize
the evolution of film morphologies for extended growth at
150 K. The lateral shape of the mounds in the first few
monolayers of growth is imprinted by the fat fractal shape
of the submonolayer islands upon which the mounds are
built. However, for thicker films the mounds develop a more
geometric shape with a preference for A-facets rather than B-
facets. This latter feature, which is shown in figure 5(a) for
20 ML films, was also apparent in earlier diffraction studies
which are sensitive to facet structure. Finally, we present
results for the vertical film and mound profiles from these
simulations for 20 ML films grown at 150 K. Figures 5(b)–(e)
show four representative ‘line profiles’ across the simulation
image in figure 5(a). Note that the floor of the valleys between

(a) (d)

(c) (f)

(b) (e)

Figure 4. Comparison of experimental ((a), (d)) and simulated
morphologies with finite ((b), (e)) and infinite ((c), (f)) ES barrier for
3 ML films deposited with flux F = 0.003 ML s−1 at 150 K (left
row: (a), (b), (c)) and 180 K (right row: (d), (e), (f)). For finite
ES barrier we choose δES(B-step) ≈ 0.08 eV and δES (A-step) =
2δES (B-step). Image sizes are 86 × 86 nm2 ((a)–(c)) and
140 × 140 nm2 ((d)–(f)).

mounds have a significant height above the original substrate,
ranging from 12 to 15 layers for the 20 ML film, and that
the valley walls have a finite slope at the base. (The latter is
exaggerated in figure 5 due to the different scales for horizontal
and vertical directions.) One also observes a distribution of
(substantial) sizes for the top layer islands or terraces, where
the average of these is similar to the value indicated in figure 3
for 3 ML films grown at 150 K. These various features will
be replicated in the step-dynamics modeling including DF
presented below in section 3.

3. Step-dynamics modeling: vertical mound profiles

Step-dynamics modeling is particularly effective in providing
insight into the shape of the vertical mound profiles and into
behavior of related quantities such as the average terrace
width [1, 2]. Here, we refine the previous modeling by Krug
and co-workers [31, 32] for circular mound geometries to
include DF at step edges. This DF process facilitates step
annihilation at the valleys between mounds, and thus can
greatly impact their vertical profiles.

5



J. Phys.: Condens. Matter 21 (2009) 084216 M Li et al

30

1 2

3 4

25

20

15

10
0 200 400 600 800 1000

30

25

20

15

10
0 200 400 600 800 1000

30

25

20

15

10
0 200 400

Lateral Position (unit of a) Lateral Position (unit of a)

600 800 1000

30

25

20

15

10
0 200 400 600 800 1000

H
ei

gh
t (

un
it 

of
 b

)
H

ei
gh

t (
un

it 
of

 b
)

1

2

3

4

(a)

(b) (c)

(d) (e)

Figure 5. (a) Simulated image (280 × 280 nm2) of a 20 ML Ag film deposited on Ag(111) at 150 K with F = 0.003 ML s−1. ((b)–(e)) Line
profiles across the image at locations indicated in (a). Here ‘a’ is the (lateral) surface lattice constant and ‘b’ is the interlayer spacing. Images
highlight steps between different layers.

3.1. Theoretical formulation

Our model describes each mound as a set of concentric circular
islands, labeled by the number, n, of the layer above the
substrate. We let r denote the radial distance from the
center of the mound, and let rn denote the island radii (at
locations corresponding to the bottom of the steps). See
figure 6. Complete model prescription includes the following
ingredients: (a) specifying the growth velocity vn = drn/dt for
each step; (b) removal of the bottom step, n = n(min), when
its radius, rn(min), grows to reach R, the radius of the ‘capture
zone’ of the mound. This removal process corresponds to
annihilation with the bottom step in the adjacent mound where
this step is traveling in the opposite direction. (c) Nucleation
of new islands on top of the mound when the radius, rn(max), of
the current top layer island, n = n(max), reaches some critical
value Rc < R. Below, we comment further on the introduction
of new islands with regard to mass conservation.

Thus, at any particular time in this model, the mound is
described by n(max) − n(min) + 1 concentric circular islands
labeled by n(min) � n � n(max) with radii satisfying Rc �
rn(max) < rn(max)+1 < · · · < rn(min) � R. This mound should
be regarded as sitting on n(min) − 1 complete layers, and the
height of the mound measured from valley to peak is given by
�h = [n(max) − n(min) + 1]b, where again b denotes the
interlayer spacing.

In prescribing evolution in the step-dynamics model,
we regard atoms depositing within the ‘step-edge region’ a
distance c above the descending step n, i.e., for rn − c < r <

rn , as always funneling downward to that step [2, 13]. Atoms
landing on the flat (non-step-edge) part of the nth terrace
between steps n + 1 and n incorporate at the ascending step
n + 1 with probability P+

n and at the descending step n with
probability P−

n . Thus, one has P+
n + P−

n = 1. The detailed
form of P±

n comes from solving the appropriate boundary

6
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Figure 6. Schematic of circular mound geometry utilized in our
step-dynamics modeling including DF.

value problem for the deposition–diffusion equation on this
terrace7. To incorporate mass conservation, and to facilitate
coarse-graining (cf section 4), it is convenient to formulate
evolution in terms of island areas, An = πr 2

n . For a ‘middle’
step with n(min) < n < n(max), one has

dAn/dt = F[(√An−1 − √
πc)2 − An]P+

n−1

+ F[(√An − √
πc)2 − An+1]P−

n

+ F[An − (
√

An − √
πc)2]

= F[An−1 − An]P+
n−1 + F[An − An+1]P−

n

− 2
√

π Fc(
√

An−1 P+
n−1 − √

An P+
n )

+ π Fc2(P+
n−1 − P+

n ). (1)

This result yields an equation for vn = drn/dt =
(2πrn)

−1dAn/dt . Natural refinements are needed for the top
step [since it captures all atoms landing on the top terrace for
0 < rn(max) < Rc] and for the bottom step [which captures all
atoms landing on the lowest terrace for rn(min) < r < R].

The classic model without DF is simply recovered by
setting c = 0, and all previous analysis was for this case. Most
such c = 0 analysis set P+

n = 1 (and P−
n = 0) which produces

the feature that the velocity of steps at the bottom of adjacent
mounds vanish as the steps approach each other. As a result,
steps never annihilate. This classic model (c = 0) should
provide a reasonable description for Ag/Ag(111) at higher T
around 250 K where there is little interlayer transport, and
where island and mound sizes are so large that DF plays a
limited role (at least in the initial stages of growth up to several
dozen ML). The neglect of interlayer transport for Ag/Ag(111)
is certainly justified at 150 K and below, but here the effect
of DF is more significant as shown below. In particular, for
c > 0, steps at the bottom of adjacent mounds approach each
either and collide with finite velocity at annihilation, even for
P+

n = 1 [2, 13]. For nearly-straight steps with large rn(min),
the specified relative velocity of approach at collision of 2c

7 Solution of the steady-state diffusion equation ∂n/∂t = F + ∇2n =
F + r−1∂/∂r(r∂n/∂r) ≈ 0 for the adatom density, n, for r− <

r < r+ with boundary conditions n(r−) = 0 (ascending step) and
∂n(r+)/∂r = −n(r+)/LES (descending step) yields P+ = [1/2 − r2+(r2+ −
r2−)−1 ln(r+/r−)]/[LES/r− + ln(r+/r−)] where P+ + P− = 1.

for P+
n = 1 is consistent with the behavior of 1D atomistic

models8.
Below all lateral (vertical) distances will be measured in

units of surface lattice constant a = 0.298 nm (the interlayer
spacing b = 0.236 nm). R is selected as the average radius
for well-developed mounds from STM images, so that R ≈
70a at 150 K. Nucleation of top layer islands is a stochastic
process [1, 2]. The critical radius for top layer nucleation,
Rc, should thus be regarded as an average radius for top layer
nucleation. This quantity should scale like the average radius
for top layer islands which is ∼20a at 150 K. Thus, we choose
Rc = 20a at 150 K.

3.2. Numerical results

Results of step-dynamics simulations with P+ = 1 for the
evolution of mound profiles are shown in figure 7 for both
the classic model with no DF (c = 0) and for the refined
model including DF (c = 1/2). Profiles are shown both for
10, 20, 30, . . . ML, and also for a sequence of coverages
selected so that the top layer island always has the critical size.
The former reveals more effectively the evolution of the top
layers, while the latter allows for more systematic assessment
of the evolution of the shapes of vertical mound profiles. A
key difference between the models is the development of a
deep grove at the valley between mounds for the classic model
(c = 0), also described as the Zeno effect [1]. This behavior
reflects the artificial feature that the bottom steps can never
annihilate for c = 0, so that the valley between mounds
remains at the substrate with height zero. In contrast, for c > 0,
step annihilation does occur, so the mound valley increases in
height and the mound slope at the base of the valley remains
finite. This behavior was observed in our realistic atomistic
simulations in figure 5. In fact, the valley height in those
simulations is reasonably consistent with the predictions of the
step-dynamics model including DF.

As an aside, we have also performed modeling with
variable P±

n choosing parameters appropriate for Ag/Ag(111)
at 150 K. In this case, one cannot introduce new top layer
islands with zero radius, as the corresponding P+

n(max) =
0 (see footnote 7). Thus, we introduce mounds with a
finite radius of 1/2. Although this strictly this violates mass
conservation, one might just view growth as corresponding
to an effective deposition flux slightly above F. (More
sophisticated alternatives could be implemented9. However,
behavior is indistinguishable from that above with P+ = 1.)

Of particular interest in early diffraction studies of
Ag/Ag(111) growth at low T [10] was the evolution of the
mean terrace width and related quantities. This behavior is
readily assessed using our step-dynamics models. Let the

8 Consider two approaching steps in a 1D atomistic model with P+ = 1,
where their approach is due to deposition at sites on the terrace between them
together with a contribution due to DF at the steps. Analysis of this finite-
state Markov process reveals that the average relative velocity of approach at
collision is 2c, consistent with our step-dynamics model.
9 In a more realistic treatment of top layer nucleation, once the current top
island radius reaches the critical value, one does not immediately introduce
a new top layer island with finite size. Instead, one waits a finite time until
sufficient material has been deposited on top to form a such new top layer
island. Top layer island growth is reduced appropriately during this period.

7
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Figure 7. Evolution of vertical mound profiles for 0 < r < R from step-dynamics modeling with no interlayer transport (P+ = 1) selecting
R = 70 and Rc = 20: (a) classic model with no DF (c = 0); (b) refined model with DF (c = 1/2).

width of terrace n be denoted by Ln = rn − rn+1. Then, a
standard (std) measure of the average terrace width is Lav =
Lav(std) = ∑

n Ln/
∑

n 1. If the sum includes all terraces,
then one has Lav(std) = R/�h, where again �h is the
height difference between the valley and peak of the mound.
Alternatively, it is natural to restrict consideration to terraces
‘on-the-side’ of the mound (as done in all results reported
below). To this end, we have excluding the special top two
terraces since these together constitute the ‘top of the mound’
with radius typically ∼Rc (cf figures 7(a) and (b)). We also
exclude bottom terrace which is typically narrow. Then, for
the standard definition of average terrace width, one has that

Lav(std) ≈ (R − Rc)/�h (2)

is still sensitive to �h and thus to the detailed shape of the
valley between mounds. Early studies also considered the
variance of the terrace width distribution, σ 2 = ∑

n[Ln −
Lav(std)]2/

∑
n 1. Finally, it should also be noted that one

might naturally consider an area-weighted average terrace
width: if δAn = An − An+1 denotes the area of terrace n, then
this average is given by Lav(area) = ∑

n δAn Ln/
∑

n δAn .
Figure 8 shows the evolution of both definitions of Lav and
of σ for the classic model (c = 0) and for the model including
DF (c = 1/2) for terraces on the side of the mound.

Behavior for the classic model (c = 0) can be readily
understood. The mound height in this model is known to scale
like h(r) ≈ θ + θ1/2 H (r/R) where H is a suitable shape

function [1, 31, 32]. This scaling together with the identity
h(R) = 0 implies that �h ≈ θ+θ1/2 H (Rc/R). Consequently,
Lav(std) should display a rapid asymptotic decrease like θ−1.
In contrast, Lav (area) should more reflect the Poisson scaling
of W ∼ θ1/2 and should thus decrease more slowly like θ−1/2.
Similarly, it has already been noted that the terrace width in the
middle of the mound scales like θ−1/2 [32]. These features are
apparent in figure 8(a). For the more realistic model including
DF (c = 1/2), the behavior of Lav(std) is very different,
decreasing initially like θ−1/2 and subsequently more slowly.
This is reflects a sensitivity to �h, and specifically to the
increase in the height of the valley between mounds for models
with c > 0. The slow decrease of Lav(std) or Lav(area) for
thicker films also partly reflects the ultimate selection of a well-
defined mound shape in this model (in contrast to indefinite
steepening in the classic model). As an aside, we note that
Lav displays significant oscillations when including one or both
of the top two terraces. In addition, we have considered the
evolution of the standard deviation, σ , of the terrace width
distribution. This quantity oscillates significantly for c > 0,
but decreases with increasing θ for both models.

Finally, we note that this step-dynamics analysis with
c > 0 (or c = 0) does not produce a well-defined θ−2/3 scaling
of Lav(std) or of σ proposed in diffraction studies of the growth
of quite thin Ag/Ag(111) films at low T [10]. We thus expect
that this behavior was ‘transient or effective scaling’ rather than
more persistent ‘true scaling’.

8
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Figure 8. Behavior of the both the standard (standard) and area-weighted (area) average terrace width, L av, and well as the standard deviation,
σ , of the terrace width distribution for: (a) the classic model with no DF (c = 0); (b) the refined model with DF (c = 1/2) (for parameters in
figure 7). Also shown for comparison are curves corresponding to decay like θ−n with n = 1, 2/3, and 1/2.

4. Coarse-grained 3D continuum modeling

A significant challenge is to derive an evolution equation for
a coarse-grained continuum function describing the height,
h(r , t), of a mound versus lateral position, r . In our modeling
focusing on a single mound with circular symmetry (cf
section 3), h = h(r, t) depends only on the radius r = |r |, and
is defined for 0 < r < R (where R is the capture zone radius).
Also, the mound has a flat top with fixed height h = hmax(t)
for r < Rc (the critical radius for top layer nucleation). See
section 3. To rigorously derive the evolution equation, one
might start from either fully-discrete atomistic modeling or
from vertically-discrete step-dynamics modeling. Irrespective
of the starting point, one anticipates that this evolution equation
has the phenomenological form

∂/∂ t h(r, t) = Fb − ∇ · J = Fb − r−1∂/∂r [r J (r, t)],
where J = J (r, t)r̂ (3)

for Rc < r < R. Here, J denotes the surface diffusion flux,
with r̂ denoting the unit vector in the radial direction. This flux
is an intrinsically non-equilibrium quantity proportional to F
since detachment from step edges is assumed to be negligible.

Below, we shall set Ac = π R2
c and Amax = π R2. It

is also convenient to consider the mound height measured
relative to the average height, δh(r, t) = h(r, t) − Ftbδ, so
∂/∂ t δh = −∇ · J . Mass conservation demands that the
average mound height satisfies 〈h〉t = Ftb or 〈δh〉t = 0, i.e.,
that
∫

0<r<R
dr 2πrδh(r, t) = Acδhmax(t)

+
∫

Rc<r<R
dr 2πrδh(r, t) = 0. (4)

From this constraint and using (3), it immediately follows that

Ac d/dt δhmax(t) = −2π Rc J (Rc, t) + 2π R J (R, t). (5)

Above δhmax(t) = hmax(t) − Ftb denotes the height of the top
terrace relative to the average height. It is natural to impose the
boundary condition J (R, t) = 0 simplifying (5).

4.1. Derivation of a traditional evolution equation

To derive an evolution equation of the form (3), one can
start with the step-dynamics formulation and imagine fitting
a smooth height function, h(r, t), through the top corners of
the steps so that h(rn, t) = nb. Then, traditionally [2, 13, 15],
one utilizes the fundamental relation

∂/∂ t h(rn, t) = (−drn/dt)∂/∂r h(rn, t), (6)

and exploits a suitable Taylor expansion about rn for terms
involving rn±1 in the expression for drn/dt obtained from (1).

However, for the circular geometry considered here, it is
more convenient to adopt a different (but equivalent) approach
based on a smooth height function h = h(A, t) depending on
area A = πr 2 and starting from the basic relation

∂/∂ t h(An, t) = (−dAn/dt)∂/∂ A h(An, t). (7)

To express dAn/dt in a suitable form starting from (1), we
need expansions for An±1 about An = A. Since h(An±1) −
h(An) = ±b = (An±1 − An)h A + 1/2(An±1 − An)

2h AA +· · ·,
it follows that

An±1 − An = ±(b/h A) + 1
2 (b

2/h A)∂/∂ A(1/h A)

± (b3/h A)∂/∂ A[(1/h A)∂/∂ A(1/h A)] + · · · (8)

where h A = ∂/∂ A h(An, t), etc. Recall that δAn = An − An+1

gives the area of terrace n. Then, since (8) implies the relation
h A ≈ −b/δAn, it follows that δA = b/|h A| provides a
measure of terrace area at a specific location in the mound.
Below, we provide details of the derivation of a continuum
evolution equation only for constant P±

n . We do not treat
the case of variable P±

n which is more complicated as these
quantities depend on both inner and outer terrace radii.

In the case of the classic step-dynamics model with no
DF (c = 0) and constant P±

n (including the case P+ = 1
of most relevance here), the form of the evolution equation (1)
for island areas is particularly simple. For Ac = π R2

c < A <

Amax = π R2, one obtains

∂/∂ t h(A, t) = Fb − ∂/∂ AK (A, t), (9)

9
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where

K (A, t) = 1
2 Fb2(P+ − P−)/h A

− 1
6 Fb3(1/h A)∂/∂ A(1/h A) + · · · (no DF, c = 0).

(10)

Comparison with (3) suggests the correspondence K =
2πr J . The first term in K corresponds to the destabilizing
uphill current induced by the ES barrier. The second term is
associated with up-down symmetry breaking which generally
displayed in mound growth shapes, although this term will
become relatively insignificant for long times in the model
without DF (c = 0).

In discussing the general solution of (9), it is more
convenient to consider δh(A, t) = h(A, t) − Ftb which
satisfies equation (5) without the Fb-term. Here, we just
consider with Zeno-type grooving at the mound valley where
one has that h A = (2π R)−1hr = ∞ for r = R or A = Amax,
so that K (Amax, t) = 0. In contrast, since h A < ∞ at r = Rc,
one has that K (Ac, t) 
= 0. Then, mass conservation imposes
the boundary condition [cf (5)]

Acd/dt δhmax(t) = −K (Ac, t). (11)

Finally, we comment on the most important scaling
solution consistent with asymptotic Poisson-like growth. For
t → ∞, this solution, consistent with (9) and (10), has the
form

δh(A, t) ≈ √
(Ft)bϕ(A/Amax),

where ϕ(α) = (P+ − P−)ϕ′′(α)/ϕ′(α)2. (12)

As indicated above, the first term in K dominates for this
solution as t → ∞ and the second is ignored. Its behavior will
be elucidated further below in section 4.2. This solution should
effectively describe the evolution of larger mounds where DF
is not significant, e.g., corresponding to at least initial growth
of Ag/Ag(111) at around 250 K.

For the refined step-dynamics model including DF (c =
1/2) with constant P±

n (including P+ = 1), the evolution
equation includes the additional terms10

∂/∂ t h(A, t)|DF = −2
√

π Fc(
√

An+1 − √
An)P+

= Fc
√

(π/A)[−b + O(b2)]. (13)

These terms do not have the conservative form of (9). However,
for the model with c > 0, the mound slope is finite at the
valley so even K (Amax, t) 
= 0, and mass conservation must be
enforced by an appropriate choice of boundary conditions. The
solution of this equation does not have a scaling form like (12),
but instead should evolve to the steady-state mound shape. The
second term in K above (as well as the first) should impact this
shape.

Even analysis of this steady-state solution is non-trivial
requiring imposition of appropriate boundary conditions. It
is convenient to consider �h(A, t) = h(A, t) − h(Amax, t)
for which the steady-state equation has the same form as
for h(A, t) without the term Fb, i.e., a third-order ODE.

10 These terms have the form ∂/∂t h|DF = Fc
√

(π/A){−b +
b2[1/2∂/∂ A(1/h A) − (4Ah A)−1] − b3[(1/6)∂/∂ A[(1/h A)∂/∂ A(1/h A)] −
(4Ah A)−1∂/∂ A(1/h A) + (8A2h2

A)−1]}P+ + · · ·

We impose the boundary conditions �h(Amax) = 0 and
∂/∂ A�h(Amax) = (2π R)−1∂/∂r�h(Amax) = −(2π R)−1ms

where ms is the selected slope at the mound valley. Since
the steps are quasi-linear near the mound base, to a good
approximation ms should be determined by a 1D analysis
which yields ms = 1 for P+ = 1 [2, 13]. Step-dynamics
results in section 3 are reasonably consistent with this value.
A third boundary condition could be provided by the mound
height, �h = �h(Ac, t) − �h(Amax, t) measured from valley
to the top terrace at A = Ac. This quantity is non-trivial, but it
is constrained by a flux-balance condition [13].

4.2. Alternative formulation

An alternative strategy for deriving continuum evolution
equations is to regard the radius or area of the islands
composing the mound as a function of mound height, e.g.,
consider a continuous function, A(h, t), such that An =
A(hn, t). To obtain a corresponding evolution equation
utilizing (1), we again need an appropriate expansion for An±1

about An = A. Here, this expansion has the simpler form

An±1 = A(hn±1 = hn ± b) = An ± b Ah + 1
2 b2 Ahh

± 1
6 b3 Ahhh + · · · (14)

where Ah = ∂/∂h A(hn), etc.
Then, for the classic step-dynamics model with no DF

(c = 0), after replacing An by A, etc, substituting the
above expansion into the evolution equation (1) for dAn/dt
immediately obtains Fokker–Planck-type equation (FPE) for
A(h, t). For constant P±, this FPE has the form11

∂/∂ t A(h, t) = −Fb∂/∂h A(h, t)

+ 1
2 Fb2(P+ − P−)∂2/∂h2 A(h, t)

− 1
6 Fb3∂3/∂h3 A(h, t) + · · · . (15)

Changing the independent variable to correspond to a
reference frame moving with the growing film, δh = h − Ftb,
removes the first drift term from the FPE for A(δh, t). Then,
for long-time scaling solutions where the last term in (15) is
small (see below), it follows that A satisfies a simple diffusion
equation with diffusion coefficient proportional to (P+ − P−).

Here, we just consider solutions with Zeno-type grooving
at the mound valley so that A(δh, t) → Amax smoothly as
δh → −∞. It is necessary to also impose suitable boundary
conditions on the evolution equation (15) for A(δh, t) at the
moving boundary δh = δhmax(t). In addition to the constraint
A(δhmax(t), t) = Ac, mass conservation requires that

Acd/dtδhmax(t) = − 1
2 Fb2(P+ − P−)Aδh(δhmax, t)

+ 1
6 Fb3 Aδhδh(δhmax, t) − · · · , (16)

where ∂ B/∂(δh) = Bδh , etc, which is entirely consistent
with (11). Neglecting the higher-order terms in (15) and (16),
as is appropriate for asymptotic scaling solutions (see below),
this formulation constitutes a well-posed moving boundary
value problem.

11 Applying a partial derivative, ∂/∂h, to this equation yields an identical FPE
for the local terrace width, δ A = δ A(h, t) = −b∂/∂h A(h, t) as a function
of film height, h. Note that

∫
h<h max dhδ A(h, t) = (Amax − Ac)b should be

constant for all t (i.e., normalization of the ‘terrace area distribution’).

10
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Figure 9. Continuum theory prediction for mound shape in the
model without DF (c = 0) selecting Rc/R = 2/7, consistent with
figure 7(a). This analysis follows [32].

Analogous to (7) above, it is natural to look for a
scaling solution to (15) consistent with asymptotic Poisson-like
growth. These have the form

A(h, t) = Amax�[(δh = h − Ftb)/(
√

(Ft)b)],
where (P+ − P−)�′′(z) = −z�′(z). (17)

Note that the inflection point of this function always
corresponds to the average height or δh = 0 (cf [32]). The
ODE (17) for � follows from substitution into (14) ignoring
the last small term. It is entirely consistent with the ODE (7)
for ϕ12, recognizing that ϕ and � are inverse functions, i.e.,
ϕ(�(z)) = z and �(ϕ(α)) = α. The specific form of this
scaling solution for Zeno-like grooving at the valley of the
mound (where �(z) → 1 as z → −∞) has been obtained
directly for P+ = 1 by Krug and co-workers [32]. For the
general case of constant P±

n , one has that

�(z) = 1 − C{1 + erf[(P+ − P−)−1/2z/
√

2]}. (18)

Following [32], the height of the top terrace relative to
the average height is determined from δhmax = √

(Ft)zmax,
where �(zmax) = Ac/Amax, and the parameter C is determined
by requiring that 〈z〉 = 〈δh〉 = 0.13 The corresponding
mound shape function is plotted in figure 9 for our choice of
Ac/Amax = 4/49 where C = 0.4825 and zmax = 1.6613
for P+ = 1. Behavior matches well results of step-dynamics
simulations for no DF (c = 0) as shown previously [1, 32].
Again, this modeling provides a reasonable description of
overall mound shape for Ag/Ag(111) particularly for higher
T ∼ 250 K where DF is not so significant.

For the refined step-dynamics model including DF (c =
1/2), additional terms appear in the evolution equation beyond
those shown in (15). Also, the last term in (15) will be
important in determining the steady-state form of the solution.
The analysis of this equation is further complicated by the need

12 If ϕ satisfies the ODE G(a, ϕ(a), ϕ′(a), ϕ′′(a), ...) = 0, then it immediately
follows that � satisfies the ODE G(�(z), z, 1/�′(z),−�′′(z)/�′(z)3, ...)

= 0.
13 The latter implies that so that

∫
0<z<z max dz �(z) = ∫

−∞<z<0 dz �(z).

to impose appropriate boundary conditions at both the valley of
the mound and at the top.

5. Conclusions

A realistic atomistic lattice-gas model has been developed
which can successfully provide detailed picture of the
complex multilayer mound morphologies which develop
during deposition of Ag on Ag(111), particularly for a range of
T below 200 K. Step-dynamics modeling provides additional
insight into the vertical profiles of mounds developing in
this (and in related) systems. In particular, such modeling
elucidates the evolution of the average terrace width on the
side of mounds. Coarse-grained continuum modeling has
the potential to provide further insight into the evolution
and selection of mound shapes. A fairly detailed analysis
is available for the regime where the effects of DF can be
neglected, but challenges remain in developing the theory to
treat mound shape selection in the presence of DF.
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Appendix. Stacking fault islands (SFI) for
submonolayer Ag/Ag(111)

References [21, 22] provide the following picture for SFI island
nucleation, which had also been discussed much earlier [33].
Diffusion of small clusters in metal(111) homoepitaxial
system in general involves motion between configurations with
adatoms on fcc and on hcp sites. It is clear that the larger
the cluster, the larger the diffusion barrier for this process,
and the larger the energy penalty, �E > 0, for the hcp
versus the fcc configuration. Thus, for any T , one expects
there to be a maximum cluster size, i∗, such that cluster
diffusion is significant on the timescale of island growth during
deposition. If an atom aggregates with a cluster of size i∗,
the growing cluster is thereafter assumed to be frozen in the
configuration at the time of aggregation. Thus, the fraction of
SFI versus regular islands is roughly given by the population,
exp[−�Ei∗/(kBT )], of hcp relative to fcc configurations of
the cluster of size i∗. For Ir/Ir(111), this substantial fraction
increases with lower T and exceeds 30% below 300 K [22].

However, our STM analysis of behavior for Ag/Ag(111)
reveals far fewer SFI [23]. At 120–135 K, it is easy to
distinguish dendritic SFI as they point in the ‘wrong direction’
relative to regular islands (RI). See figure 10. Interestingly such
SFI have the same general shape as RI, a feature supported
by EAM studies indicating that the PES for edge diffusion
depends only on the nature of the microfaceted step edge (and
not whether the island is SFI or RI) [23]. Extensive analysis
of such images indicates that the fraction of SFI is only ∼4%
for deposition at 120–135 K. This fraction should decrease
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Figure 10. STM image of triangular dendritic islands formed by
deposition of 0.4 ML of Ag on Ag(111) at 120 K with
F = 0.004 ML s−1. Image size is 577 × 577 nm2. Almost all islands
are regular islands (RI) with adatoms of fcc sites, and one arm
pointing left. However, examples are provided of two stacking fault
islands (SFI) with adatoms on hcp sites, and one arm point right.

for higher T [21, 22]. It is not possible to identify SFI in
the regime of fat fractal islands between 150 and 160 K, but
observations at higher T of 180–200 K suggest only ∼1%
SFI. Thus, our neglect of cluster diffusion and of SFI is well
justified, particular at 150 K and above, the regime of most
interest here.
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